Q-COMPACT SETS AND Q-COMPACT MAPS

ASUMAN GÜVEN AKSOY

(Received June 10, 1989, revised October 23, 1989)

Abstract. We shall introduce the notion of Q-compactness for an operator T between Banach spaces and consider the relationships between Q-compact sets and maps as well as measures of non-Q-compactness.

Introduction. The notion of an approximation scheme on a Banach space and its use in approximation theory can be found in Butzer and Scherer [2] and in Pietsch [6]. In the present paper we introduce a refined notion of compactness by developing a refined notion of an approximation scheme Q on a Banach space X. It is well-known that the Kolmogorov numbers $\delta_n(T)$ can be used to estimate the degree of compactness of an operator T between two Banach spaces. Generalized Kolmogorov numbers $\delta_n(T;Q)$ can be defined to obtain a further possibility for doing this. These numbers are a natural extension of the standard Kolmogorov numbers in the sense that

$$\delta_n(T;Q) = \delta_n(T)$$

in the case that Q is the set of all at-most-n-dimensional subspaces of X. A map $T \in L(X)$ is said to be Q-compact if $\lim_{n} \delta_n(T;Q) = 0$. First we provide an example of a Q-compact map which is not a compact, thus showing that Q-compactness is a genuine generalization of compactness. Then, taking the well-known characterization of compact sets as a model, a Dieudonne-Schwartz type representation theorem for Q-compact sets is obtained for a bounded set D in X. This representation leads to the concept of a measure $\gamma(D;Q)$ of non-Q-compactness, and it is proven that $\gamma(D;Q) = \lim_{n} \delta_n(D;Q)$. Furthermore, several properties of Q-compact maps and their relation to Q-compact sets are studied.

Preliminaries. I) Let X be a Banach space over the field K of real or complex numbers and N be the set of all non-negative integers. For each $n \in N$, let $Q_n = Q_n(X)$ be a family of subsets of X satisfying the following conditions:

- $(1) \{0\} = Q_0 \subset Q_1 \subset \cdots \subset Q_n \subset \cdots ;$
- (2) $\lambda Q_n \subset Q_n$ for every $n \in N$ and $\lambda \in K$;
- (3) $Q_n + Q_m \subset Q_{n+m}$ for every $n, m \in N$.

Then $Q(X) = (Q_n(X))_{n \in \mathbb{N}}$ is called an approximation scheme on X. We shall simply use Q_n to denote $Q_n(X)$ if the context is clear.

Examples

- 1) Q_n = the set of all at-most-n-dimensional subspaces of any given Banach space X.
- 2) Let E be a Banach space and X = L(E); let $Q_n = N_n(E)$, where $N_n(E) =$ the set of all n-nuclear maps [5] on E.
- 3) Let $\alpha^k = (\alpha_n)^{1+\frac{1}{k}}$, where (α_n) is a nuclear exponent sequence [3]. Then Q_n on X = L(E) can be defined as the set of all $\Lambda_{\infty}(\alpha^k)$ -nuclear maps on E.
- II) Le U_X be the closed unit ball of X and D be a bounded subset of X. Then the n^{th} generalized Kolmogorov number $\delta_n(D;Q)$ of D with respect to U_X is defined by

$$\delta_n(D;Q) = \inf\{r > 0 : D \subset rU_X + A \text{ for some } A \in Q_n(X)\}.$$

The n^{th} Kolmogorov number $\delta_n(T;Q)$ of $T \in L(X)$ is defined as $\delta_n(T(U_X);Q)$.

From I) and II) it follows that $\delta_n(T;Q)$ forms a non-increasing sequence of non-negative numbers:

$$||T|| = \delta_0(T; Q) \ge \delta_1(T; Q) \ge \cdots \ge \delta_n(T; Q) \ge 0.$$

- III) A bounded subset D of X is said to be a Q-compact set if $\lim_{n} \delta_n(D;Q) = 0$ and $T \in L(X)$ is said to be a Q-compact operator if $\lim_{n} \delta_n(T;Q) = 0$, i.e. $T(U_X)$ is a Q-compact set.
- 1. Q-Compactness Does Not Imply Compactness. In this section we show that in $L_p[0,1], 2 \le p \le \infty$, with a suitably defined approximation scheme, we can find a Q-compact map which is not compact.

Let $[r_n]$ br the space spanned by the Rademacher functions. It can be seen from the Khinchin Inequality that [4]

$$l_2\approx [r_n]\subset L_p[0,1] \text{for all } 1\leq p<\infty.$$

We define an approximation scheme A_n on $L_p[0,1]$ as follows:

$$A_n = \{ f \in L_p[0,1] : f \in L_{p+\frac{1}{n}} \} \text{ or simply } A_n = L_{p+\frac{1}{n}}.$$

 $L_{p+\frac{1}{n}} \subset L_{p+\frac{1}{n+1}}$ gives us $A_n \subset A_{n+1}$ for $n=1,2,\ldots$, and it is easily seen that $A_n+A_m \subset A_{n+m}$ for $n,m=1,2,\ldots$, and that $\lambda A_n \subset A_n$. Thus $\{A_n\}$ is an approximation scheme in the sense of Pietsch [6].

Next we observe the existance of a projection

$$P: L_p[0,1] \to R_p \text{ for } p \geq 2,$$

where R_p denotes the closure of the span of $\{r_n(t)\}$ in $L_p[0,1]$. We know that for $p \ge 2$, $L_p[0,1] \subset L_2[0,1]$. Now R_2 is a closed subspace of $L_2[0,1]$ and $\underline{P}_2: L_2[0,1] \to R_2$ is an

orthogonal projection onto R_2 . Then $\underline{P} = j \circ \underline{P_2} \circ i$, where i, j are isomorphisms shown in the diagram below, is clearly a projection.

$$\begin{array}{ccc} L_p & \xrightarrow{i} & L_2 \\ \underline{P} \downarrow & & & \downarrow \underline{P}_2 \\ R_p & \longleftarrow & R_2 \end{array}$$

Proposition 1. For $p \geq 2$ the projection $P: L_p[0,1] \to R_p$ is Q-compact but not compact.

Proof. Let U_{R_p} , U_{L_p} denote the closed unit balls of R_p and L_p , respectively. It is easily seen that $\underline{P}(U_{L_p}) \subset ||\underline{P}|| ||U_{R_p}||$. But $U_{R_p} \subset CU_{R_{p+\frac{1}{n}}}$ where C is a constant follows from the Khinchin inequality. Therefor $\underline{P}(U_{L_p}) \subset L_{p+\frac{1}{n}}$, which gives $\delta_n(P,Q) \to 0$. To see that \underline{P} is not a compact operator, observe that $\dim R_p = \infty$ and $I - \underline{P}$ is projection with kernel R_p , so $I - \underline{P}$ is not a Fredholm operator. Therefore \underline{P} is not a Riesz operator, but every compact operator is a Riesz operator (see [5]) so \underline{P} cannot be a compact operator.

- 2. Q-Compactness of Bounded Sets in a Banach Space. Let X be a Banach space. A bounded subset D of X is said to be Q-compact if $\delta_n(D;Q) \to 0$ $(n \to \infty)$. We assume each $A_n \in Q_n(n \in N)$ is separable. It is immediate from the definitions that Q-compact sets are separable and Q-compact maps have separable range. A sequence $(x_{n,k})_k \subset A_n$ is said to be an order- c_0 -sequence if the following hold:
 - (1) for every $n \in N$ there exists an $A_n \in Q_n$ and $(x_{n,k})_k \subset A_n$;
 - (2) $||x_{n,k}|| \to 0$ as $n \to \infty$ uniformly in k.

Theorem 2. Suppose (X, Q_n) is an approximation scheme with sets $A_n \in Q_n$ assumed to be solid (i.e., $|\lambda|A_n \subset A_n$ for $|\lambda| \leq 1$). Then a bounded subset D of X is Q-compact if and only if there exists an order- c_0 -sequence $(x_{n,k})_k \subset A_n$ such that

$$D \subset \{\sum_{n=1}^{\infty} \lambda_n x_{n,k(n)} : x_{n,k(n)} \in (x_{n,k}) \sum_{n=1}^{\infty} |\lambda_n| \le 1\}.$$

Proof. Let D be Q-compact. Then $\delta_n(2D,Q) \to 0$ and so there exists n_1 such that

$$2D \subset \frac{1}{4}U + A_{n_1}.$$

Since A_{n_1} is separable let $(x_{1,k})$ be a countable dense subset of A_{n_1} ; then it is easy to see that $B_1 = (2D + \frac{1}{2}U) \cap ((x_{1,k})_k) \neq \phi$ (and is countable) and $2D \subset B_1 + \frac{1}{2}U$.

Let $D_1=(2D-B_1)\cap \frac{1}{2}U$, where $2D-B_1$ is the ordinary vector difference. Then D_1 is a bounded set (being in $\frac{1}{2}U$) and given $\epsilon>0$ we get, by the Q-compactness of 2D, that $2D-B_1\subset \epsilon U+A_m+\tilde{A}_{n_1}\subset \tilde{\tilde{A}}_{m+n_1}+\epsilon U$ for a suitable m and suitable $\tilde{A}_{n_1}\in Q_{n_1}$; this is true because $B_1\subset \tilde{A}_{n_1}$ and $\lambda \tilde{A}_{n_1}\in Q_{n_1}$ for each λ . This shows that D_1 is Q-compact,

and as before there exists A_{n_2} such that $2D_1 \subset \frac{1}{8}U + A_{n_2}$; let $(x_{2,k})$ be a dense subset of A_{n_2} Then.

$$B_2=(2D_1+rac{1}{4}U)\cap ((x_{2,k})_k)$$
 is non-empty;
$$2D_1\subset B_2+rac{1}{4}U;$$

$$D_2 = (2D_1 - B_2) \cap \frac{1}{4}U$$
 is Q-compact.

Continuing this process we define

$$B_m = (2D_{m-1} + \frac{1}{2^m}U) \cap ((x_{m,k})_k), (x_{m,k}) \text{ dense in } A_{n_m};$$

then $2D_{m-1} \subset B_m + \frac{1}{2^m}U$ and we define

$$D_m = (2D_{m-1} - B_m) \cap \frac{1}{2^m} U.$$

Our construction gives for each $d \in D$, successively chosen $b_i \in B_i, i = 1, 2, \dots, k$ such that

$$d-(\frac{1}{2}b_1+\frac{1}{2^2}b_2+\cdots+\frac{1}{2^k}b_k)\in 2^{-k}D_k,$$

and since $D_k \subset 2^{-k}U$, it follows that

$$d=\sum_{n=1}^{\infty}\frac{1}{2^n}b_n.$$

Since each $b_n = x_{n,k(b)}$ for a suitable k(b) and since $b_n \in B_n \subset 2D_{n-1} + \frac{1}{2^n}U \subset 2 \cdot \frac{1}{2^{n-1}}U + \frac{1}{2^n}U \subset \frac{3}{2^{n-2}}U$ it follows that $||b_n|| \to 0$.

In the reverse direction, suppose we have for each n an $A_n \in Q_n$ and $(x_{n,k})_k \subset A_n$ with $||x_{n,k}|| \to 0$ as $n \to \infty$ uniformly in k and

$$D\subset \{\sum_n \lambda_n x_{n,k(n)}: \sum_n |\lambda_n| \leq 1\} = C, \text{ say}.$$

Since for each $c \in C$ we can write

$$c = \sum_{n=1}^{m} \lambda_n x_{n,k(n)} + \sum_{n=m+1}^{\infty} \lambda_n x_{n,k(n)} = u + v,$$

where $u \in \lambda_1 A_1 + \cdots + \lambda_m A_m$, our assumptions on (Q_n) and the solidness of the A_n 's give that $u \in \tilde{A}_{m^2}$; also, given $\epsilon > 0$ we may choose m such that $||x_{n,k}|| < \epsilon$ for each k > m. Thus $C \subset \epsilon U + \tilde{A}_{m^2}$ and so $\delta_n(C,Q) \to 0$ as $n \to \infty$, and therefor also $\delta_n(D,Q) \to 0$.

Remarks. i) Theorem 2 can be considered as an analogue of the Dieudonne-Schwartz lemma on compact sets in terms of standard Kolmogorov diameter. If one chooses Q_n to be the at-most-n-dimensional subspaces of X one can show that Q-compactness of a bounded subset D coincides with the usual definition of compactness of D.

- ii) The author and M. Nakamura have proven a similar theorem for p-normed spaces, 0 [1].
- 3. Q-compact Maps. For a given approximation scheme Q_n on X we shall define a continuous linear map $T \in L(X)$ to be Q-compact if $T(U_X)$ is Q-compact in X or equivalently if $\lim_{n \to \infty} \delta_n(T(U_X); Q) = \lim_{n \to \infty} \delta_n(T; Q) = 0$.

Let A be the ideal defined as

$$\mathcal{A} = \{ T \in L(X) : \delta_n(T; Q) \to 0 \text{ as } n \to \infty \}$$

and let A^s denote the surjective hull of A, which is defined by

$$\mathcal{A}^s = \{ T \in L(X) : \delta_n(TQ_{E^1}; Q) \to 0 \text{ as } n \to \infty \}.$$

where Q_{E^1} is a surjection of l_I^1 onto X with $Q_{E^1}(U_{l_I^1}) = U_X$.

Proposition 3.

- i) Q-compact maps have separable range;
- ii) the uniform limit of Q-compact maps is Q-compact;
- iii) an ideal of Q-compact maps is equal to its surjective hull, i.e. $A = A^s$.

Proof. i) follows from the definition. For ii) we first observe that $\delta_0(T;Q) \leq ||T||$. Now suppose (T_n) is a sequence of Q-compact maps, and let $T = \lim_n T_n$.

Then

$$\delta_n(T;Q) = \delta_n(T - T_n + T_n;Q) \le \delta_0(T - T_n;Q) + \delta_n(T_n;Q)$$

$$< ||T - T_n|| + \delta_n(T_n;Q)$$

gives that T is Q-compact too.

For iii), $A \subset A^s$ follows from the fact that

$$\delta_n(TQ_{E^1};Q) \leq \delta_n(T;Q)||Q_{E^1}|| = \delta_n(T;Q);$$

on the other hand

$$\delta_n(TQ_{E^1};Q) = \delta_n(TQ_{E^1}(U_{l_1^1});Q) = \delta_n(T;Q);$$

gives the equality readily.

Next we give a characterization of Q-compact subsets of X via Q-compact maps into X.

Theorem 4. Assume (X, Q_n) is an approximation scheme on the Banach space X with each $A_n \in Q_n$ being a vector subspace of X. Then a bounded subset D of X is Q-compact if and only if $D \subset T(U_E)$ for a suitable Banach space E and a Q-compact map T on E into X.

Proof. We need only prove the "only if" part. Let D be Q-compact and let C denote the closed, absolute convex hull of D. Then that C is Q-compact is easily seen as follows: each $c \in C$ is of the form $c = \sum_{i=1}^m \lambda_i d_i$, with $\sum_{i=1}^m |\lambda_i| \le 1$ and $d_i \in D$ for each i; given $\epsilon > 0$, there exists N such that for all $n \ge N$, $\delta_n(D,Q) < \epsilon$ and equivalently $D \subset \epsilon U_X + A_N$ and obviously then $C \subset \epsilon U_X + A_N$.

Let X_C denote the linear subspace of X spanned by the elements of C endowed with the norm given by the gauge (=Minkowski functional) μ of C. Then (X_C, μ_C) is a Banach space. Let $E = (X_C, \mu_C)$. If T is the canonical injection of X_C into X, then $T(U_E) = C \supset D$ and T is Q-compact.

4. Measures of Non-Q-Compactness. Let X be a Banach space and D be a bounded subset of X. Assume that each $A_n \in Q_n$ $(n \in N)$ is solid. The ball measure of noncompactness of D, denoted by $\gamma(D)$, is defined by

$$\gamma(D) = \inf\{r > 0 : D \subset \bigcup_{i=1}^k B(x_i, r)\},\,$$

where $B(x_i, r)$ stands for the ball centered at $x_i \in X$ with radius r and k is arbitrary but finite.

Suppose $(x_{n,k})_k$ is an order- c_0 -sequence in X as defined in section 2. Then S_m , associated with $(x_{n,k})_k$, is defined by

$$S_m = \{ \sum_{n=1}^m \lambda_n x_{n,k(n)} : \sum_{n=1}^m |\lambda_n| \le 1 \}$$

where $x_{1,k(1)} \in A_1, x_{2,k(2)} \in A_2, \ldots, x_{m,k(m)} \in A_m$. Then $S_m \subset A_1 + A_2 + \cdots + A_m \in Q_{m^2}$. So if Q_n is n-dimensional, S_n is at most n^2 -dimensional.

For a bounded set D in X, we define the ball measure of non-Q-compactness $\gamma(D,Q)$ of D by

$$\gamma(D,Q) = \inf\{r > 0 : \exists \text{ order-} c_0\text{-sequence } (x_{n,k})_k \text{ and assosiated } S_n$$

such taht
$$D \subset \bigcup_{x \in S_n} B(x, r)$$
 for some n .

The following proposition defines the ball measure of non-Q-compactness as a limit of the Kolmogorov diameter of D defined with respect to the given approximation scheme.

Theorem 5. Let X be a Banach space with approximation scheme Q_n and let D be a bounded subset of X; then

$$\gamma(D,Q)=\lim_{n\to\infty}\delta_n(D;Q).$$

Proof. Let r be admissible for $\gamma(D,Q)$, then there exists an order- c_0 -sequence $(x_{n,k})$ and associated (S_n) such that

$$D \subset \bigcup_{x \in S_n} B(x,r) = \bigcup_{x \in S_n} \{x + rU_X\}.$$

Now $S_n \subset \tilde{A}_{n^2} \in Q_{n^2}$ and if $m \geq n^2$ we have $S_n \subset \tilde{A}_m \in Q_m$; therefore r is admissible for $\delta_m(D,Q)$ and hence $\gamma(D,Q) \geq \delta_m(D,Q)$.

Suppose inf $\delta_n(D,Q) = \mu < \lambda$. Then there exists n such that $\delta_n(D,Q) < \lambda$ so there exists $\lambda' < \lambda$ and A_n such that

$$D \subset \lambda' U + A_n$$
.

Let $D \subset K + L$, where $K \subset \lambda'U$ and $L \subset A_n$. Since $L \subset A_n$ and $\delta_i(L,Q) \to 0$, hence by Theorem 2 there exists an order- c_0 -sequence $(x_{n,k})_k$ such that

$$L \subset \{\sum_{n=1}^{\infty} \lambda_n x_{n,k(n)} : \sum_{n=1}^{\infty} |\lambda_n| \le 1\}.$$
 (*)

Because $(x_{n,k})_k$ is an order- c_0 -sequence, given $\epsilon > 0$ we can find N such that $||x_{n,k}|| \le \epsilon$ for all $n \ge N$ and all k. Using equation (*) above, we can write every $l \in L$ as

$$l = \sum_{1}^{N} \lambda_n x_{n,k(n)} + \sum_{N+1}^{\infty} \lambda_n x_{n,k(n)}.$$

It is easily follows that $l=x+\epsilon U_X$ for some $x\in S_N$. Hence $||l-x||<\epsilon$ and $L\subset\bigcup_{x\in S_N}B(x,\epsilon)$. Therfore $D\subset\lambda'U+\bigcup_{x\in S_N}B(x,\epsilon)\subset\bigcup_{x\in S_N}B(x,\lambda'+\epsilon)\subset\bigcup_{x\in S_N}B(x,\lambda+\epsilon)$. Hence $\gamma(D,Q)\leq\epsilon+\lambda$ and $\gamma(D,Q)\leq\lim_{x\in S_N}\delta_n(D;Q)$.

References

- [1] A. G. Aksoy and M. Nakamura, The approximation number $\gamma_n(T)$ and Q-precompactness, Math. Japon., 31 (1986).
- [2] P. L. Butzer and K. Scherer, "Approximationsprozesse und Interpolationsmethoden," Mannheim/Zurich, 1968.
- [3] E. Dubinsky and M. S. Ramanujan, On λ -nuclearity, Mem. Amer. Math. Soc., 128 (1972).
- [4] J. Lindenstrauss and L. Tzafriri, "Classical Banach Spaces I: Sequence Spaces," Berlin/Heidelberg/New York, 1977.
- [5] A. Pietsch, "Operator Ideals," North-Holland, Amsterdam, 1980.
- [6] A. Pietsch, Approximation spaces, J. Approx. Theory, 32 (1981), 115-134.

Department of Mathematics, Claremont McKenna College, Claremont, California 91711